Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Applied Technology Review
Revolutionizing Indoor Air Quality with Purification Tech
Air purification systems are increasingly common in residential and educational settings, aiming to remove pollutants and allergens from indoor air.
By
Applied Technology Review | Monday, December 08, 2025
Stay ahead of the industry with exclusive feature stories on
the top companies, expert insights and the latest news delivered straight to your
inbox. Subscribe today.
FREMONT, CA: Human health and wellbeing depend on clean air, especially in indoor spaces where people spend a lot of time. It is essential to comprehend their efficacy in practical situations in order to make well-informed decisions and build policies. Indoor air quality can be jeopardized by a number of factors, including biological contaminants like mold and pollen, outside pollution, and volatile organic compounds (VOCs) from building materials. These problems in educational institutions can be made worse by crowded classrooms and shared areas, which may have an effect on students' academic performance and health.
Several types of air purification technologies are available, including High-Efficiency Particulate Air (HEPA) filters, activated carbon filters, ultraviolet germicidal irradiation (UVGI), and photocatalytic oxidation (PCO). Each technology targets specific pollutants and employs different mechanisms to remove or neutralize them. Studies assessing the effectiveness of air purification systems in real-world settings have yielded mixed results. While laboratory experiments demonstrate the efficacy of specific technologies in controlled environments, real-world conditions present additional challenges, like varying pollutant levels, airflow patterns, and occupant behavior.
The effectiveness of these systems may depend on factors such as filter maintenance, system capacity, and the presence of other indoor pollution sources. Despite their potential benefits, air purification systems have limitations that must be considered. Some technologies, such as UVGI and PCO, may generate harmful byproducts or produce ozone at levels exceeding safety standards. Cost and energy consumption are important factors to weigh when implementing these systems on a large scale. Integrating air purification technology with existing heating, ventilation, and air conditioning (HVAC) systems can enhance indoor air quality throughout a building.
Centralized filtration systems can capture pollutants at the source and distribute clean air evenly, benefiting occupants in all areas. Retrofitting HVAC systems can be expensive and require careful planning and installation. Effective air purification also depends on occupants' behavior and habits. Proper ventilation, regular cleaning, and minimizing indoor pollution sources are essential for maintaining healthy indoor air quality. Educating building occupants about the importance of these practices can complement the use of air purification technology and promote a healthier living and learning environment.
Air purification technology can improve indoor air quality and the health and well-being of occupants in residential and educational settings. Its effectiveness in real-world environments depends on various factors, including technology, system maintenance, integration with existing HVAC systems, and occupant behavior. Further research and monitoring are needed to optimize the use of air purification systems and ensure their long-term benefits in diverse indoor environments.